Bengali (and a few other) geminates [in the mental lexicon]

Aditi Lahiri, Sandra Kotzor, Adam Roberts, \& Allison Wetterlin,
Language and Brain Laboratory, University of Oxford

WORKSHOP

Geminate consonants across the world ICPhS 18, 2015, GLASGOW

Bengali singleton \& geminates: Phonological contrasts

Acoustic differences: singleton \sim geminate voiceless stops

pata 'leaf'

Phonological contrasts

SWISS GERMAN - a caveat

Initial stops in Swiss German in phrase meidal position
CD VOT

iha pp $\quad \mathbf{o} \quad \mathbf{m}$
'I don't like French fries.'

CD VOT

'I don't like beans.'
A mystery as to how \& why such geminates should survive

Lahiri \& Krahenmann (2004); Kraehenmann \& Lahiri (2008)

Phonetic \& phonological evidence for initial voiceless geminate stops 1000 years ago

 Notker's Anlautgesetz Law of Initials and initial geminates in Swiss GermanNotker Labeo, an Abbot of the monastery at St Gall, Switzerland "wrote as he spoke and heard"

He devised his own alphabet \& the orthography reflects his pronunciation.
b d g word-initially after sonorants, e.g. vowels, $/ \mathrm{n}, \mathrm{m}, \mathrm{l}, \mathrm{r} /$
p t k/c word-initially after plosives \& fricatives, e.g. /p, t, k, h/ after a pause
ín díu óugen begínnet (Nc09720)
Íh pegínne (Nc 03519)
díu súnna gât (Nc02311)
er férrost kât (Nc10721)

Uńde dáz kelóuben so uúaz îh pefindo fóne dîr

 Uuás mag táz siñ?Examples: Martianus Capella (Codex Sangallensis 872) early $11^{\text {th }}$ century.

Lahiri \& Krahenmann (2004) :Transactions of the Philological Society

Words beginning with $/ \mathrm{p} \sim \mathrm{b} /$

in díu óugen begínnên.
In the eyes begin (3p.sg) 'it begins in the eyes'

dés íh pegínne that I begin

Words beginning with $/ \mathrm{k} \sim \mathrm{g} /$

diu súnna gât the sun goes

Sô er férrost kât he furthest goes

Words beginning with /t $\sim \mathrm{d} /$

Uuás mag táz sin̂?

Uńde dáz kelóuben so uúaz íh pefindo fóne dír

Asymmetry in word initial consonants: Notker's Anlautgesetz Law of Initials

Letters bdgword-initially after sonorants, e.g./vowels, n , m, 1, r/
Letters ptk/c word-initially after an plosives, e.g./p, t, k, h/
beginnen \sim peginnen, gat \sim kat, das \sim tas

This suggests that there was no meaningful contrast between word initial $<\mathrm{pt} \mathrm{k}>\&<\mathrm{b} \mathrm{dg}>$: the consonant alternation was entirely predictable.

The phonemic inventory had no voiced /b dg/
In CORONAL consonants, we find exceptions!

Asymmetry: Exceptions with some CORONAL <t>s

Sô mánig tág ist in iâre
Expected: Letter $<t>$ follows an obstruent

Sô uuárd táz ter tág pegónda décchen die stérnen

Unexpected: Letter $<t>$ follows a sonorant!

Asymmetry: always CORONAL < $\rangle>$ following obstruent \& sonorant no alternation

Sô mánig tág ist in iâre

Sô uuárd táz ter tág pegónda décchen die stérnen

Asymmetry in word initial consonants

$$
\begin{aligned}
& \text { Letters pll } \quad \mathbf{p} / \mathrm{c} \text { word-initially after an plosives, e.g. } / \mathrm{p}, \mathrm{t}, \mathrm{k}, \mathrm{~h} / \\
& \mathbf{b} \mathbf{d} \mathbf{g} \text { word-initially after sonorants, e.g./vowels, } \mathrm{n}, \mathrm{~m}, \mathrm{l}, \mathrm{r} /
\end{aligned}
$$

Letters b d $\quad \mathbf{g}$ word-finally (There was no final devoicing!)

Some words with initial t regardless of context - after sonorants and plosives
What was the phonological/phonetic contrast? Why did < t > differ? How were these words which did not alternate (such as tag) differ from those that did, such as tas $\sim d a s$. Conclusion: The alternation and the contrast was in quantity not of voicing!

Word initial contrast CORONAL asymmetry -

 restricted to t : tt
Change from West Germanic to Notker's phonological system

West Germanic obstruent phonemes (ancestor of Old English \& Old High German)
LABIAL CORONAL DORSAL

geminate singleton	-pp	$-t t$ t	-kk k	voiceless	PLOSIVES
	-bb	d -dd (b)	g -gg	voi Do we YES - 1000	evidence? ystem a

FRICATIVE

NOTKER's system resolves clash

Comparing Notker's words with modern Swiss German

Notker

Swiss
German

non-alternating \mathbf{t}

Modern Swiss German has increased the singleton-geminate contrast in all places of articulation! How? initial singleton-geminate contrast

p	t	k
p	t	k

a) $/ \mathrm{pz} /-/ \mathrm{p} /$: /tsvai p̌aar/ 'two pairs'/kxai paar/ 'no bar'
b) /tı/ - /t/: /kxain trankk/ 'no tank' /kxain tank/ 'no thanks'
c) /kı/ - /k/: /kxai kıottlett/ 'no cutlet' /kxai kottə/ 'no godmother'

Incorporating loans $\boldsymbol{\&}$ extending the geminate-singelton contrast

Proto Germanic	Middle Dutch	Latin/ Old French	Italian	English	Swiss Ge	
/b/ôk-s	/b/auma	/p/air, /p/ar	/p/izza	/b/rother		Inherited
				/p/ullover	/pzaar/ /pritsa/ /p:uli/	Loans

- The consonantal quantity contrast existed only in word initial coronals in Notker's dialect - the system was asymmetric
- Later generations extended this contrast to other places of articulation to incorporate a voicing contrast in loans which did not exist in the native dialect.
- This had the effect of enhancing a 'nonsesuch' contrast in the language

Geminates come and (very reluctantly) go

- Sanskrit, Apabhramsa, Pali and indeed all older Indo Aryan languages all had medial geminates
- Old English, Old High German, Old Norse also had medial geminates
- Modern West Germanic languages have largely lost them: Swiss German being a major exception
- but perhaps English has reluctantly kept a few
- Indo-Aryan geminates blossomed!

Geminates come and (very reluctantly) go

/r/-Assimilation: CORONAL consonants assimilate to a preceding rhotic across morphemes

across words

boro dada ghor dzamai $>$	bore dada $>$	bod:a ghod3:amai	'older brother' 'stay-at-home son-in-law'

Concatenation

$\mathrm{k}^{\text {hul-l-o }}$	>	:o 'open-SIMPLE PAST-3P'
$\mathrm{b}^{\text {hab-b-o }}$	$>$	$\mathrm{b}^{\text {hab:o }}$ 'think-FUTURE-1P'
pat-t-am	$>$	pat:am 'lay down-HABITUAL PAST-1p'
pũtf-tf ${ }^{\text {²}}$-i	>	punt ${ }^{\text {hh }}$--1 'wipe-PROGRESSIVE.PRESENT-1P'

Loss of geminates occurs ONLY when there are metrical constraints (complex foot structure, constraint against trimoraic syllables, syllable edges). Nevertheless, they go reluctantly!

ENGLISH: hole, whole

St Wulfstan was a very holy man.

These facilities are wholly inadequate. \{whole - ly\} 120 ms

Bengali consonantal inventory

OBSTRUENTS				
LABIAL	CORONAL LOW	CORONAL HIGH	CORONAL STRIDENT	DORSAL
$\mathrm{p}, \mathrm{b}, \mathrm{p}^{\mathrm{h}}, \mathrm{b}^{\text {h }}$	t, $\mathbf{t}^{\text {h }}$, d, d ${ }^{\text {h }}$	t, th, d, d ${ }^{\text {h }}$	tf, tf ${ }^{\text {h }}$, d3, d $3^{\text {h }}$	$\mathbf{k}, \mathbf{k}^{\mathbf{h}}, \mathbf{g}, \mathbf{g}^{\mathbf{h}}$
pi, b:, $\mathbf{p}^{\text {h }}$, $\mathbf{b}^{\text {h }}$:	$\mathbf{t}:, \mathbf{t}^{\mathrm{h}} \cdot, \mathbf{d}^{2}, \mathbf{d}^{\mathrm{h}}:$ (s)	$\begin{aligned} & \text { t, : } t^{\text {h. }}: ~ d: d^{\mathrm{h}}: \\ & \int, \int: \end{aligned}$	tf:, $\mathrm{f}^{\text {h }}$, d dzi, d $3^{\text {h }}$:	k:, $\mathrm{k}^{\mathrm{h}}, \mathrm{g} \cdot \mathrm{g}^{\prime}, \mathrm{g}^{\mathrm{h}}$:

SONORANTS
LABIAL CORONAL CORONAL DORSAL
m, m:
n, n:
1, 1:
1, 1):

Bengali Geminates

Singletons \& Geminates

- Underlying geminates are represented by a single set of features and a single release
- Medial geminates are part of two syllables
- Never treated as two separate entities which undergo separate phonological processes

Acoustic Cues:

- The predominant acoustic cue for gemination is consonant (closure) duration (e.g. Hankamer et al. 1989, Ridouane 2010)
- Neither differences in the preceding vowel nor release properties reliably distinguish geminates from singletons

Representing \& processing long vs. short

Expressions of short/long contrasts in languages

- Languages do not have monomorphemic words like "little long", "a bit short", etc.
- Once geminates disappear, there is only one set of consonants left and they are treated as metrically short - no language has only geminates

Duration is obviously variable

- How long does the closure duration have to be, to be perceived as a long consonant? How short does it have to be to be short?
- To what extent do speakers tolerate durational changes in words in a language with a geminate/singleton contrast?
- If the segmental information is accurate, is mispronunciation in duration tolerated?

Possible hypotheses:

(A) No mispronunciations with durational changes are accepted
(B) All mispronunciations are accepted if only durational information is changed
(C) Durational contrasts are asymmetric - i.e. 'long' vs. 'short' are not the same: the asvmmetrv is a consequence of the representation

Representing \& processing long vs. short

Expressions of short/long contrasts in languages

- Languages do not have monomorphemic words like "little long", "a bit short", etc.
- Once geminates disappear, there is only one set of consonants left and they are treated as metrically short - no language has only geminates

Duration is obviously variable

- How long does the closure duration have to be, to be perceived as a long consonant? How short does it have to be to be short?
- To what extent do speakers tolerate durational changes in words in a language with a geminate/singleton contrast?
- If the segmental information is accurate, is mispronunciation in duration tolerated?

Possible hypotheses:

(A) No mispronunciations with durational changes are accepted
(B) All mispronunciations are accepted if only durational information is changed
(C) Durational contrasts are asymmetric - i.e. 'long' vs. 'short' are not the same: the asvmmetry is a conseouence of the representation

Lexical representation

Duration differences can be considered to be "cues" to featural properties such as [voice]. If so, perhaps geminates and singletons could also be characterised as [\pm LONG]?
If the contrast is purely symmetric, and both 'features' are represented, then one might assume a symmetry in access and recognition.
If the representation is asymmetric - i.e. geminates are specified in their representation but singletons are not, then we may predict an asymmetry.

Prediction

Lengthening would be tolerated
Shortening would not be tolerated.

Semantic priming: Latency and Electrophysiological measures
TASK: Lexical Decistion - Is the Target a word or a nonword

DESIGN

> Task: Cross-modal Lexical decision with semantic priming

24 singletons and mispronunciations	d $^{\text {hama }}$	'large basket'	*d'am:a
Semantically matched targets	ঝুডডি	d3'uri	'forgiveness'
24 geminates and mispronunciations	gram:o	'country person'	*gramo
Semantically related target	পब्धী	pol:i	'village'
Equal numbers of fillers, words \& nonwords			

Prime-Target semantic relationships, familiarity, frequency of usage ratings - all checked by independent questionnaires.

Average length for singleton ($\mathbf{8 9} \mathbf{m s}$) \& geminate ($\mathbf{2 0 7} \mathbf{m s}$)

Geminate/Singleton mispronunciation task

Semantic Priming: Geminates vs. Singletons

SHORT $>*$ LONG
d^{h} ama $>\mathrm{d}^{\mathrm{h} a m}: \mathrm{a} \longrightarrow \mathrm{d} 3^{\mathrm{h}}$ uri
Same amount of facilitation for
both singleton (W) and
geminate (NW) primes
\rightarrow Geminate (NW) prime
\quad leads to lexical access

LONG > *SHORT

gram:o > *gramo — pol:i
Facilitation effect only for geminate (W) primes
\rightarrow Singleton (NW) prime does not lead to lexical access

Semantic Priming: Geminates vs. Singletons Event Related Potentials

Event related potentials are a direct measure of brain activity.

The most obvious component to look for is the N 400 which is involved in semantic integration.
If a mispronunciation is successful in lexical integration, we expect a low N400.
If a mispronunciation is NOT accepted, we expect a large N400.

The EEG experiments were run with our portable system in Calcutta .

Semantic Priming: Geminates vs. Singletons Event Related Potentials

Semantic Priming: Geminates vs. Singletons Event Related Potentials

SHORT > *LONG

No difference in N400 response between singleton (W) and geminate (NW) primes
\rightarrow Geminate (NW) prime leads to lexical access

LONG >*SHORT

No N400 for geminate (W) but N400 for singleton (NW) prime
\rightarrow Singleton (NW) prime does not lead to lexical access

Roberts, Kotzor, Wetterlin \& Lahiri (2014) Neuropsychologia

In conclusion...

- Gemination is an active process in many langugaes
- Degemination is usually constrained by metrical constraints
- In terms of lexical contrast, our assumption is that only 'long' consonants are specified, giving us an asymmetry in in lexical representations : μ vs. []
- This asymmetry is reminiscent of the featural asymmetries we find which depends on specified and underspecified features.
- When singletons and geminates are manipulated to give the opposite duration, (long-to-short and short-to-long) we find that lengthening a singleton does not hinder lexical access.
- However, shortening a specified geminate, blocks lexical access.
- The evidence comes from reaction time latencies as well as from electrophysiological measure.

If geminates are considered as nonesuches, they are quite nice ones!

And we would also like to thank:
Dr Leena Sengupta at Gokhale Memorial Girls' College, Calcutta
ERC \& University of Oxford for their financial support
All our participants at Gokhale Memorial Girls' College

SUPPORT from the $D F G$ \& the ERC

