

Bengali (and a few other) geminates [in the mental lexicon]

Aditi Lahiri, Sandra Kotzor, Adam Roberts, & Allison Wetterlin, Language and Brain Laboratory, University of Oxford

WORKSHOP

Geminate consonants across the world ICPhS 18, 2015, GLASGOW

Bengali singleton & geminates: Phonological contrasts

Acoustic differences: singleton ~ geminate voiceless stops

pata 'leaf'

pat:a 'whereabouts'

Phonological contrasts

SWISS GERMAN - a caveat

Initial stops in Swiss German in phrase meidal position

CD VOT

'I don't like French fries.'

CD VOT

'I don't like beans.'

A mystery as to how & why such geminates should survive

Lahiri & Krahenmann (2004); Kraehenmann & Lahiri (2008)

Phonetic & phonological evidence for initial voiceless geminate stops 1000 years ago Notker's *Anlautgesetz* Law of Initials and initial geminates in Swiss German

Notker Labeo, an Abbot of the monastery at St Gall, Switzerland "wrote as he spoke and heard"

He devised his own alphabet & the orthography reflects his pronunciation.

```
b d g word-initially after sonorants, e.g. vowels, /n, m, 1, r/
```

p t k/c word-initially after **plosives & fricatives**, e.g. /p, t, k, h/ after a pause

```
ín díu óugen begínnet (Nc09720)
Íh pegínne (Nc03519)
```

```
díu súnna gât (Nc02311)
er férrost kât (Nc10721)
```

Unde dáz kelóuben so uúaz ih pefindo fóne dir Uuás mag táz siñ?

Examples: *Martianus Capella* (Codex Sangallensis 872) early 11th century.

Words beginning with /p~b/

in diu óugen beginnên.

In the eyes begin (3p.sg)

'it begins in the eyes'

dés îh peginne that I begin

Words beginning with /k~g/

Sô er férrost kât he furthest goes

diu súnna gât the sun goes

Words beginning with /t~d/

Uuás mag táz siñ?

Unde dáz kelóuben so uúaz ih pefindo fóne dír

Asymmetry in word initial consonants: Notker's *Anlautgesetz* Law of Initials

```
Letters b d g word-initially after sonorants, e.g. /vowels, n, m, 1, r/
Letters p t k/c word-initially after an plosives, e.g. /p, t, k, h/
beginnen ~ peginnen, gat ~ kat, das ~ tas
```

This suggests that there was no meaningful contrast between word initial & <b d g>: the consonant alternation was entirely predictable.

The phonemic inventory had no voiced /b d g/

In **CORONAL** consonants, we find exceptions!

Asymmetry: Exceptions with some CORONAL <t>s

Sô mánig tág ist in iâre

Expected: Letter <t> follows an obstruent

Sô uuárd táz ter tág pegónda décchen die stérnen

Unexpected: Letter <t> follows a sonorant!

Asymmetry: always CORONAL <t> following obstruent & sonorant no alternation

Sô mánig tág ist in iâre

Sô uuárd táz ter tág pegónda décchen die stérnen

Asymmetry in word initial consonants

Letters p t k/c word-initially after an plosives, e.g. /p, t, k, h/b d g word-initially after sonorants, e.g. /vowels, n, m, l, r/

Letters **b d g** word-finally (*There was no final devoicing*!)

Some words with initial t regardless of context - after sonorants and plosives

What was the phonological/phonetic contrast? Why did < t > differ? How were these words which did <u>not</u> alternate (such as tag) differ from those that did, such as $tas \sim das$. Conclusion: The alternation and the contrast was in quantity not of voicing!

Change from West Germanic to Notker's phonological system

West Germanic obstruent **phonemes** (ancestor of Old English & Old High German) CORONAL DORSAL LABIAL geminate -kk voiceless -tt -pp **PLOSIVES** singleton k h voi Do we have further evidence? -bb -dd YES - compare the system a -gg 1000 years later! **FRICATIVE**

Comparing Notker's words with modern Swiss German

Modern Swiss German has increased the singleton-geminate contrast in all places of articulation! How?

Initial geminates in Swiss German Alemannic (dialect of Thurgau): Word initial singleton-geminate contrast

- a) /pː/ /p/: /t͡svai pːaar/ 'two pairs' /k͡xai paar/ 'no bar'
- b) /tx/ /t/: /kxain txankk/ 'no tank' /kxain tank/ 'no thanks'
- c) /kɪ/ /k/: /kxai kɪɔttlett/ 'no cutlet' /kxai kɔttə/ 'no godmother'

Why did the asymmetric contrast system change?

Incorporating loans & extending the geminate-singelton contrast

Proto Germanic	Middle Dutch	Latin/ Old French	Italian	English	Swiss German	
/ b /ôk-s	/ <mark>b</mark> /auma			/ <mark>b</mark> /rother	/puəx/ /pomm/ /pruder/	herited
		/ <mark>p</mark> /air, / <mark>p</mark> /ar	/p/izza	/ <mark>p</mark> /ullover	/pːaar/ /pːit͡sa/ /pːuli/	Loans

- The consonantal quantity contrast existed only in word initial coronals in Notker's dialect the system was asymmetric
- Later generations extended this contrast to other places of articulation to incorporate a voicing contrast in loans which did not exist in the native dialect.
- This had the effect of enhancing a 'nonsesuch' contrast in the language

Geminates come and (very reluctantly) go

- Sanskrit, Apabhramsa, Pali and indeed all older Indo Aryan languages all had medial geminates
- Old English, Old High German, Old Norse also had medial geminates
- Modern West Germanic languages have largely lost them: Swiss German being a major exception
- but perhaps English has reluctantly kept a few
- Indo-Aryan geminates blossomed!

```
/j/-assimilation (like Germanic); /kş/ > /kh:/; /dm/ > /d:/
OE, OHG bed-j-es > bed:es 'bed-NOM.PLURAL'
Skt sat-j-a > fot:o 'truth'
Skt rak-ş-as > rakh:of 'monster'
Skt pad-m-a > pod:o 'lotus'
```

Geminates come and (very reluctantly) go

/r/-Assimilation: CORONAL consonants assimilate to a preceding rhotic across morphemes

```
kor-tʃh-i > matʃh:-i 'do-PROGRESSIVE.PRESENT-1P'
por-t-am > pot:am 'read-HABITUAL PAST-1P'
across words
boro dada > boro dada > bod:a 'older brother'
ghor dʒamai > ghodʒ:amai 'stay-at-home son-in-law'
```

Concatenation

```
khul-l-o > khul:o 'open-SIMPLE PAST-3P'
bhab-b-o > bhab:o 'think-FUTURE-1P'
pat-t-am > pat:am 'lay down-HABITUAL PAST-1P'
pũtʃ-tʃh-i > pũtʃh:-i 'wipe-PROGRESSIVE.PRESENT-1P'
```

Loss of geminates occurs ONLY when there are metrical constraints (complex foot structure, constraint against trimoraic syllables, syllable edges). Nevertheless, they go reluctantly!

ENGLISH: hole, whole

St Wulfstan was a very **holy** man. 50 ms These facilities are wholly inadequate. {whole - ly} 120 ms 127 ms Winifred read the whole lease from top to bottom. [houl = lix]

Bengali consonantal inventory

OBSTRUENTS				
LABIAL	CORONAL	CORONAL	CORONAL	DORSAL
	LOW	HIGH	STRIDENT	
p, b, p ^h , b ^h	t, th, d, dh	t, th, d, dh	ts, tsh, d3, d3h	k , k ^h , g , g ^h
$p:, b:, p^h:, b^h:$	$t:, t^h:, d:, d^h:$	t,: th:, d:, dh:	ts:, tsh:, dz:, dzh:	\mathbf{k} :, \mathbf{k} ^h :, \mathbf{g} :, \mathbf{g} ^h :
	(s)			

SONORANTS			
LABIAL	CORONAL	CORONAL	DORSAL
m, m:	n, n:	l, l :	ŋ, ŋː

Bengali Geminates

Singletons & Geminates

- Underlying geminates are represented by a single set of features and a single release
- Medial geminates are part of two syllables
- Never treated as two separate entities which undergo separate phonological processes

Acoustic Cues:

- The predominant acoustic cue for gemination is consonant (closure) duration (e.g. Hankamer et al. 1989, Ridouane 2010)
- Neither differences in the preceding vowel nor release properties reliably distinguish geminates from singletons

Representing & processing long vs. short

Expressions of short/long contrasts in languages

- Languages do not have monomorphemic words like "little long", "a bit short", etc.
- Once geminates disappear, there is only one set of consonants left and they are treated as metrically short no language has only geminates

Duration is obviously variable

- How long does the closure duration have to be, to be perceived as a long consonant? How short does it have to be to be short?
- To what extent do speakers tolerate durational changes in words in a language with a geminate/singleton contrast?
- If the segmental information is accurate, is mispronunciation in duration tolerated?

Possible hypotheses:

- (A) No mispronunciations with durational changes are accepted
- (B) All mispronunciations are accepted if only durational information is changed
- (C) Durational contrasts are asymmetric i.e. 'long' vs. 'short' are not the same: the asymmetry is a consequence of the representation

Representing & processing long vs. short

Expressions of short/long contrasts in languages

- Languages do not have monomorphemic words like "little long", "a bit short", etc.
- Once geminates disappear, there is only one set of consonants left and they are treated as metrically short no language has only geminates

Duration is obviously variable

- How long does the closure duration have to be, to be perceived as a long consonant? How short does it have to be to be short?
- To what extent do speakers tolerate durational changes in words in a language with a geminate/singleton contrast?
- If the segmental information is accurate, is mispronunciation in duration tolerated?

Possible hypotheses:

- (A) No mispronunciations with durational changes are accepted
- (B) All mispronunciations are accepted if only durational information is changed
- (C) Durational contrasts are asymmetric i.e. 'long' vs. 'short' are not the same: the asymmetry is a consequence of the representation

Lexical representation

Duration differences can be considered to be "cues" to featural properties such as [voice]. If so, perhaps geminates and singletons could also be characterised as [± LONG]?

If the contrast is purely symmetric, and both 'features' are represented, then one might assume a symmetry in access and recognition.

If the representation is asymmetric - i.e. geminates are specified in their representation but singletons are not, then we may predict an asymmetry.

Prediction

Lengthening would be tolerated

Shortening would not be tolerated.

Semantic priming: Latency and Electrophysiological measures

TASK: Lexical Decistion - Is the Target a word or a nonword

DESIGN

Task: Cross-modal Lexical decision with semantic priming

24 singletons and mispronunciations dhama 'large basket' *dhama

Semantically matched targets d3huri 'forgiveness'

24 geminates and mispronunciations **gram:o** 'country person' ***gramo**

Semantically related target 'village'

Equal numbers of fillers, words & nonwords

Prime-Target semantic relationships, familiarity, frequency of usage ratings - all checked by independent questionnaires.

Average length for singleton (89ms) & geminate (207ms)

Geminate/Singleton mispronunciation task

Singleton Geminate Geminate Singleton **Prime** word nonword word nonword *dham:a (auditory) d^hama 'large basket' gram:o 'villager' *gramo /dhama/ Representation /gram:o/ activate activate no activation **Targets** pol:i 'village' dz^huri 'hamper (semantically related)

Semantic Priming: Geminates vs. Singletons

 $d^hama > *d^ham:a \longrightarrow d3^huri$

Same amount of facilitation for both singleton (W) and geminate (NW) primes

→ Geminate (NW) prime leads to lexical access

LONG > *SHORT

gram:o > *gramo ---> pol:i

Facilitation effect only for geminate (W) primes

→ Singleton (NW) prime does not lead to lexical access

Semantic Priming: Geminates vs. Singletons Event Related Potentials

Event related potentials are a direct measure of brain activity.

The most obvious component to look for is the N400 which is involved in semantic integration.

If a mispronunciation is successful in lexical integration, we expect a low N400.

If a mispronunciation is NOT accepted, we expect a large N400.

The EEG experiments were run with our portable system in Calcutta.

Semantic Priming: Geminates vs. Singletons Event Related Potentials

Semantic Priming: Geminates vs. Singletons Event Related Potentials

SHORT > *LONG

No difference in N400 response between singleton (W) and geminate (NW) primes

→ Geminate (NW) prime leads to lexical access

LONG >*SHORT

No N400 for geminate (W) but N400 for singleton (NW) prime

→ Singleton (NW) prime does not lead to lexical access

In conclusion...

- Gemination is an active process in many languages
- Degemination is usually constrained by metrical constraints
- In terms of lexical contrast, our assumption is that only 'long' consonants are specified, giving us an asymmetry in in lexical representations: μ vs. []
- This asymmetry is reminiscent of the featural asymmetries we find which depends on specified and underspecified features.
- When singletons and geminates are manipulated to give the opposite duration, (long-to-short and short-to-long) we find that **lengthening a singleton does not hinder lexical access.**
- However, shortening a specified geminate, blocks lexical access.
- The evidence comes from reaction time latencies as well as from electrophysiological measure.

If geminates are considered as nonesuches, they are quite nice ones!

And we would also like to thank:

Dr Leena Sengupta at Gokhale Memorial Girls' College, Calcutta ERC & University of Oxford for their financial support All our participants at Gokhale Memorial Girls' College

Research Collaborators

SUPPORT from the DFG & the ERC