Recursivity and the Definition of MATCH in Italian Syntax-Prosody

Nicholas Van Handel

University of California, Santa Cruz

Early work on Italian prosody assumed Strict Layering [1, 2], and subsequent work still assumes that Italian lacks prosodic recursion [3]. I revisit three Italian processes argued to apply within the phonological phrase (φ): Word-Final Vowel Deletion (VD; mare azzurro \rightarrow mar_azzurro; [4]), Stress Retraction (SR; partirà <u>Giúlio</u> \rightarrow pártira Giúlio), and Final Lengthening (FL; *i litigi tra* am<u>i</u>ci \rightarrow *i litigi tra* am<u>i</u>ci; [1, 2]). I show that VD is sensitive to smaller domains than FL and SR, motivating the existence of recursive φ . I argue that Match Theory [5] derives the correct outputs if and only if MATCH constraints are defined to see only XPs with a phonologically overt head [6].

In N+PP sequences like (1), VD optionally applies on the head N₁ sapore. [4] argues for two prosodic structures: VD applies on *sapore* in (1b) but is blocked by a φ boundary in (1c). If FL applied in the same domain, FL would be optional on N₁ in these structures. Instead, in (2b) FL only applies to the N₂ mandorle; FL on N₁ results in a marked structure in (2c) [2]. The two processes diverge in distribution, suggesting they apply in different domains. A similar divergence is observed in other syntactic contexts, while SR patterns with FL. Function words (D, P) are omitted from the schematization.

(1)	a.	Syntax	TP[rimane DP[il NP[sapore PP[di DP[cioccolata]]]]]	$TP[V \; DP[N_1 \; PP[N_2]]]$
	b.	φ-Phrasing	$_{\phi}$ (rimane) $_{\phi}$ (il sapor_ di cioccolata)	$_{\phi}(V) _{\phi}(N_1 N_2)$
	c.	φ-Phrasing	$_{\varphi}(\text{rimane}) _{\varphi}(\text{il sapor} \underline{\mathbf{e}}) _{\varphi}(\text{di cioccolata})$	$_{\phi}(V) _{\phi}(N_1) _{\phi}(N_2)$
			'The taste of chocolate persists'	
(2)	a.	TP[ho VP[assag	TP[V DP[N1 PP[N2]]]	
	b.	_φ (ho assaggi <u>a</u>	$_{\phi}(V) _{\phi}(N_1 N_2)$	
	c.	$?_{\phi}$ (ho assaggi	$?_{\varphi}(V)_{\varphi}(N_1)_{\varphi}(N_2)$	
		'I have tasted the chicken with almonds'		

To explain this divergence, I appeal to recursive ϕ and prosodic subcategories [7]: VD is sensitive to all ϕ , while SR and FL are sensitive to Maximal ϕ , those ϕ which are not dominated by any other ϕ . The structure TP[V DP[N₁ PP[N₂]]] maps to either (i) $_{\phi Max}(V) _{\phi Max}(N_{1 \phi}(N_{2}))$ or (ii) $_{\phi Max}(V) _{\phi Max}(\phi(N_{1}) _{\phi}(N_{2}))$. VD takes place in (i) but not (ii) because (i) does not have a right ϕ boundary after N₁. N₁ is never final in ϕ^{Max} , which correctly predicts that FL does not apply to the head N₁.

Match Theory derives the right outputs, but only if MATCH **only sees XPs with phonologically overt heads**. This is necessary to explain the prosody of ditransitives (3) and Subj+V sequences (4). If MATCHXP sees all XPs, the VP will be matched, which incorrectly predicts that NP and PP will phrase together to the exclusion of V (3c). Similarly, Subj and V will phrase together due to FP (4c). The new definition of MATCH ignores VP and FP, deriving the phrasings (3b) and (4b).

(4) a. FP[DP[Papà] TP[mangia]]
b. _{oMax} (Pa <u>pà</u>) _{oMax} (<u>mán</u> gia)
c. * _{@Max} (<u>Pá</u> pa <u>mán</u> gia)
'Daddy is eating'

This definition of MATCH is not unprecedented [6] but is a departure from [8]. While MATCH may vary across languages, Italian is yet another language that deploys recursive φ .

Nespor, M. & I. Vogel. 1986. Prosodic Phonology. [2] Ghini, M. 1993. Toronto Working Papers in Linguistics.
Samek-Lodovici, V. 2017. Romance Languages and Linguistic Theory. [4] Meinschaefer, J. 2005. Arbeitspapier Nr. 118. [5] Selkirk, E. 2011. The Handbook of Phonological Theory. [6] Truckenbrodt, H. 1999. Linguistic Inquiry.
Ito, J. & A. Mester. 2013. Lingua. [8] Elfner, E. 2012. Doctoral dissertation.